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We have studied experimentally and theoretically the response of randomly folded hyperelastic and elasto-
plastic sheets on the uniaxial compression loading and the statistical properties of crumpling networks. The
results of these studies reveal that the mechanical behavior of randomly folded sheets in the one-dimensional
stress state is governed by the shape dependence of the crumpling network entropy. Following up on the
original ideas by Edwards for granular materials, we derive an explicit force-compression relationship which
precisely fits the experimental data for randomly folded matter. Experimental data also indicate that the
entropic rigidity modulus scales as the power of the mass density of the folded ball with universal scaling
exponent.
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I. INTRODUCTION

Random folding of thin materials is of noteworthy impor-
tance to many branches of science and industry. Examples
range from virus capsids and polymerized membranes to
folded engineering materials and geological formations
�1–5�. They usually consist of thin sheets or rods constrained
to undergo large deformations. Accordingly, the folding phe-
nomena are associated with a rich class of crumpling phe-
nomena �3�, which belong to a wider class of interfacial de-
formation phenomena �5�. Because of their biological and
technological importance, the properties of randomly folded
thin materials are now the subject of increasingly growing
attention �5–45�.

Formally, folding of self-avoiding matter is a continuum
of isometric embeddings of a d-dimensional manifold in
n-dimensional space �46�. A rich variety of self-generated
configurations in randomly folded materials are governed by
their dimensionality, the constitutive nature of deformations,
and the nature of the forces causing the deformation
�5,32,37�. While randomly folded materials are examples of
ill-defined systems, because the folding procedures appear
quite haphazard, the experiments with randomly folded thin
sheets are rather well reproducible �37,42,43,47�, because of
the topology and self-avoiding interactions being the two
most important physical factors when dealing with folding of
thin materials �32,37,47�. In this way it was found that de-
spite the complicated appearance of folded configurations,
the folding phenomenon is in itself very robust, because al-
most any thin material crumples in such a way that the great-
est part of the folding energy ��90%� is concentrated in the
network of narrow crumpling creases �ridges� that meet in
the pointlike vertices �5,6,48�. The properties of ridges have
been studied thoroughly. Scaling laws governing the energy
and size of the ridge have been obtained analytically �5,49�
and tested numerically �9,32,48,50� and experimentally
�36,37,43�. Furthermore, it was shown that the balance of
bending and stretching energy in the crumpling creases de-
termines the scaling properties of the folded state as a func-
tion of the confinement force, sheet dimensions, and me-
chanical properties of thin material �5,6,9,32�.

Specifically, numerical simulations of random folding
with a coarse-grained model of triangulated self-avoiding

surfaces with bending and stretching elasticity �32� suggest
that the characteristic size of a folded configuration, R, scales
with the hydrostatic confinement force P as

R

h
� �L

h
�2/D� P

Eh
�−�3

, �1�

where h and L are the thickness and edge size of the sheet
�h�L�, E is the two-dimensional Young’s modulus of the
sheet, �3 is the folding force scaling exponent, and D is the
fractal dimension of the set of elastic sheets with different
edge sizes folded by the same confinement force P=const.
Namely, according to the scaling behavior �1�, a set of ran-
domly folded thin sheets of the same thickness but different
edge size L is expected to obey a fractal law

L2 � RD, �2�

when all sheets are folded by the same hydrostatic force P
=const. The fractal scaling behavior �2� was observed in nu-
merous experiments with randomly folded papers
�35,37,43,47,51–56�, metal foils �18,35,42,57,58�, and cream
layers �38�.

The numerical simulations suggest that for randomly
folded self-avoiding two-dimensional elastic sheets the scal-
ing exponent �3=1 /4 and the fractal dimension D=2.3 are
universal �32�. Experimentally, it was found that in the case
of predominantly plastic deformations of folded sheets, such
as aluminum foils and cream layers, the fractal dimension
D=2.3�0.1 is independent of the sheet thickness and the
folding force and consistent with the universal value found in
numerical simulations �38,42�. However, in experiments with
different kinds of elastoplastic paper the fractal dimension D
is found to be material dependent �37,51–56�. The latter was
attributed to the strain relaxation in randomly folded elasto-
plastic sheets after the folding force is withdrawn �37�.

More recently, it was found that the internal structure of
folding configurations also possesses scaling invariance
within a wide range of length scales �43�. The fractal dimen-
sion of folding configurations is found to be universal, Dl
=2.64�0.05—i.e. independent of sheet thickness and mate-
rial properties �43�—and close to the fractal dimension D
=8 /3 expected for a randomly folded phantom sheet with
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finite bending rigidity �32�. This finding implies that the self-
avoidance does affect the scaling properties of the internal
structure of randomly folded thin matter �see �43��. The scal-
ing behavior with D�Dl was termed an “intrinsically
anomalous self-similarity” �43�.

The statistical properties of crumpling networks formed in
randomly folded materials were also studied theoretically
�3,9,15,30�, in experiments �25,37,44�, and by numerical
simulations �30,32�. It was found that crumpling networks
are disassortative �44� and exhibit statistical self-similarity
�37�. However, there is no consensus about the statistical
distribution of crumpling crease sizes. Theoretical consider-
ations �3,30�, numerical simulations �30,32�, and experimen-
tal studies �37� suggest that the crease length distribution
obeys a log-normal distribution at relative low confinement
of the folded sheet and 	 distribution at higher confinement
ratios, whereas more recently, the current authors �44� have
reported power-law functions to give good fits for this distri-
bution. Furthermore, it was suggested that a crumpling net-
work governs the mechanical behavior of randomly folded
materials �9,32,48�, which exhibit anomalously low com-
pressibility under hydrostatic pressure �17,32,36,37�.

Generally, the mechanical response of any network is de-
termined by the volume and shape dependence of its free
energy �59�. However, numerical simulations �32� and ex-
periments �17,36� suggest that the mechanical behavior of
randomly folded sheets in a thee-dimensional stress state �k
=3� is dominated by the volume dependence of crumpling
network enthalpy, U, leading to the power-law force-
compression relation

P = F3 = R−1� �U

�

� � Y3R
−1/�k, �3�

where 
=r /R is the compression ratio, R and r�F3� are the
characteristic size of a randomly folded sheet before and af-
ter the deformation, respectively; and

Yk = � �Fk

�r
�


=1
�4�

is the mechanical stiffness of a folded sheet under k-axial
compression in a three-dimensional stress state. Furthermore,
numerical simulations suggest that the folding force scaling
exponents �k�1 /2 take only the universal values determined
by the corresponding universality classes �32�. Specifically,
numerical simulations of self-avoiding sheet folding with a
coarse-grained model of triangulated surfaces with bending
and stretching elasticity suggest the following relationship
for the folding force scaling exponent �32�,

�k = 1/�k + 1� , �5�

while in experiments with randomly folded aluminum foils,
it was found that �3=0.21�0.02 �36�. Further, it was found
that under uniaxial and radial compressions randomly folded
thin sheets exhibit a Poisson’s expansion obeying a power-
law behavior with the universal Poisson’s index �
=0.17�0.01 �60�. However, the mechanical behavior of ran-
domly folded thin materials under nonhydrostatic forces re-
mains poorly understood.

Although in three-dimensional stress states the entropic
contribution to the force-deformation behavior of a crum-
pling network is negligible, in a one-dimensional stress state,
the shape dependence of the crumpling network entropy may
play a major role, as it does for the stretching of folded
proteins �61�. However, while the entropic elasticity of flex-
ible networks is by now well understood �59,61–65�, the
entropic contribution to the crumpling network rigidity has
not been studied yet. Accordingly, to gain insight into the
mechanical behavior of crumpling networks in the one-
dimensional stress state, in this work we study the mechani-
cal behavior of randomly folded thin sheets under uniaxial
compression.

II. EXPERIMENTS

In this work we study the effect of crumpling networks on
the mechanical behavior of a randomly folded thin sheet. For
this purpose we tested hand-folded sheets of elastoplastic
papers of different thickness and hyperelastic latex rubber. In
both cases, it is expected that the mechanical response of
folded material is governed by the crumpling network. How-
ever, if rubber sheet crumpling is completely reversible, the
stress concentration in the crumpling ridges leads to plastic
deformations of paper. As a result, the large deformations of
randomly folded paper are essentially irreversible �see Fig.
1�. This limits the applicability of equilibrium thermody-
namic for describing the mechanical behavior of randomly
folded paper. On the other hand, uncontrolled unfolding of
rubber sheets makes difficult the study of randomly folded
rubber under axial compression �see Fig. 2�. Furthermore,
there is no way to study the statistical properties of a crum-
pling network in randomly folded rubber sheets. Accord-
ingly, to study the effect of a crumpling network on the me-
chanical behavior of randomly folded sheets we used

FIG. 1. Setup of axial compression test of randomly folded pa-
per: �a�–�c� loading and �d�,�e� unloading.
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different kinds of paper. Experiments with rubber sheets
were performed to confirm that the strain-stress relaxation in
elastoplastic paper �see Refs. �37�� does not affect the essen-
tial nature of the force-compression behavior of folded mat-
ter under uniaxial compression with loading rates used in this
work.

A. Materials tested

To study the statistical properties of crumpling networks
and their effect on the mechanical behavior of randomly
folded thin sheets, we used square sheets of three commer-
cial papers of different thickness h=0.024�0.004,
0.039�0.003, and 0.068�0.005 mm, early used in Refs.
�37,43�. The edge size of square paper sheets, L, was varied
from L0=4 to 66 cm with the relation L=qL0 for the scaling
factor q=1, 2, 2.5, 4, 5, 7.5, 8.75, 9, 10, 15, and 16.5. The
paper sheets were folded by hand into approximately spheri-
cal balls. At least 30 balls with different confinement ratios
K=L /R were folded from sheets of each size of each paper.
Once the folding force is withdrawn, the ball diameter in-
creases with time during approximately 6–9 days, due to the
strain relaxation �see, for details, Ref. �37��. So all experi-
ments reported below were performed at least 10 days after a
sheet was folded.

The mean diameter of each ball, R, was determined from
measurements along 15 directions taken at random. Earlier, it
was found that the folded configurations of randomly folded
papers are characterized by the universal local fractal dimen-
sion Dl=2.64�0.05 �43�, whereas the fractal dimension D
of the set of balls folded from sheets with different size L is
thickness dependent �see Ref. �37��. Early on, we reported
that the sets of balls folded from papers of thickness h
=0.024�0.004, 0.039�0.003, and 0.068�0.005 mm obey
the fractal behavior �2� with fractal dimensions D
=2.13�0.05, 2.30�0.05, and 2.54�0.06, respectively �37�.
In this work we obtain the same results.

In contrast to paper, the deformations of latex rubber are
completely reversible. We used two square sheets of latex
rubber of thickness 0.1 mm with edge sizes of 150 and 250
mm. A rubber sheet was folded by hand and fixed between
the clams to avoid unfolding �see Fig. 2�a�� just before the
mechanical test. In this way, five uniaxial compression tests
were performed with sheets of each size.

B. Mechanical tests

At least ten balls folded from sheets of each size of each
paper were tested under axial compression with compression
rates of 0.1 mm/s using a universal test machine �see Fig. 1�.
Additionally, the sets of paper balls folded from sheets of
sizes 30
30 and 60
60 cm2 were tested at compression
rates of 1 mm/s. Furthermore, ten experiments were per-
formed with balls folded from latex rubber �see Fig. 2�.

Figure 3 shows a typical force-compression behavior of a
randomly folded paper ball under uniaxial compression.
While the deformations of folded paper are essentially irre-
versible, we found that the loading part of the force-
compression curve, F1�
=H /R�, does not depend on the
compression rate, at least in the range used in this work. At
the same time, we noted that the force-compression behavior
does not obey the power-law scaling �3� �see insert in Fig. 3�.
Moreover, we found that in all cases the loading part of
experimental force-compression curve, F1�
�, may be pre-
cisely fitted �see Figs. 3 and 4� by the simple relationship

F1 = − Y1� 1 − c


 − c
− 1� �6�

for 
�c, where the fitting parameter �c�1� and the stiffness
�4� of the folded ball under uniaxial compression �Y1�Y3�
are independent of the compression rate. Specifically, we

FIG. 2. Setup of axial compression test of a randomly folded
latex rubber sheet: �a�–�c� loading and �d�,�e� unloading.

FIG. 3. The force �F� versus compression �
=H /R� curve of the
paper ball �R=400 mm� under uniaxial compression with the con-
stant displacement rate u̇=0.1 mm/s. Circles, experimental data.
Curve, fitting with Eq. �6�. Upper insets show the setup of the
experiment �ball folded from the paper of thickness 0.039 mm�;
lower inset shows the force-compression curve in log-log
coordinates.
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found that the fitting parameter scales with the folded ball
size as

c � R �7�

�see Fig. 5�a��, while the rigidity modulus

E =
Y1

R2 = R−2� �F1

�r
�


=1
�8�

scales with the mass density of the folded ball,

� =
�06hL2

�R3 , �9�

as

E

E0
= � �

�0
��

, �10�

where �0=900�50 kg /m3 is the mass density of the papers
�see �37�� and E0 is a material-dependent constant �see Fig.
5�b��. At the same time, we found that the data for different
papers presented in Fig. 5�b� are best fitted with the power-
law function �10� with the scaling exponent �=2.1�0.1
�66�.

Further, we found that Eq. �6� also provides the best fit of
the stress-compression behavior of randomly folded rubber
sheets under axial loading �see Fig. 6�. Unfortunately, we
were not able to perform systematic studies of fitting param-
eters with respect to folding conditions, because of problems
with uncontrolled unfolding of rubber sheets. Nonetheless,

the main conclusion from Fig. 6 is that randomly folded
hyperelastic sheets obey the same force-compression relation
�6� under uniaxial loading as was found for randomly folded
elastoplastic paper. So we can assume that the nature of the

FIG. 4. The loading parts of the force-compression curves in the
coordinates −F versus the dimensionless parameter �= �1−c� / �

−c� for �a� balls of different diameters folded from sheets of paper
with thickness 0.039 mm and �b� balls folded from sheets of size
300
300 mm2 of the papers of different thickness. Symbols, ex-
perimental data. Straight lines, fitting with Eq. �6�.

FIG. 5. �a� Fitting parameter c �dimensionless� as a function of
R for papers of different thickness. Symbols, experimental data.
Straight lines, scaling behavior �7�. �b� Relative modulus of rigidity,
E /E0, as a function of relative mass density � /�0 of balls folded
from papers of different thickness. Symbols, experimental data.
Straight lines, a scaling given by Eq. �10� with �=2.1. Open and
solid symbols correspond to experiments with compression rates of
0.1 and 1.0 mm/s, respectively.

FIG. 6. The loading parts of the force-compression curves in the
coordinates −F versus the dimensionless parameter �= �1−c� / �

−c� for a randomly folded latex ball under axial compression.
Circles, experimental data. Straight line, data fitting with Eq. �6�.
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mechanical response of randomly folded thin sheets under
uniaxial loading is independent of the nature of the bending
deformations of sheets.

Above we already noted that the force-compression be-
havior �6� drastically differs from the power-law force-
compression behavior �3� associated with the volume depen-
dence of the network enthalpy. Furthermore, we noted that
the mechanical rigidity of folded matter under uniaxial com-
pression is much less than under hydrostatic compression—
i.e., Y1�Y3—and the elastic modulus scaling exponent �
=2.1�0.1 �67� is close to the universal value �=2.2 ex-
pected for the scaling exponent of the entropic rigidity
modulus �see Ref. �61��. So, taking into account the low
bending rigidity of thin sheets, one can expect that the me-
chanical response of randomly folded material on the
uniaxial compression is primarily determined by the shape
dependence of the crumpling network entropy, rather than
the volume dependence of the sheet energy.

C. Statistical properties of folded sheets and crumpling
networks

In paper, crumpling creases leave permanent marks, and
so the crumpling network can be easily visualized after un-
folding �37,44�. Accordingly, in this work, ten balls of each
size of paper with thicknesses 0.039�0.003 and
0.068�0.005 �67� were carefully unfolded and scanned to
study the statistical properties of crumpling networks. To
gain a better visualization of crumpling networks, each
crumpling crease was marked with a pencil during the un-
folding process. The scanned images �see Fig. 7�a�� were
used to reconstruct crumpling networks formed by straight
ridges which meet in the pointlike vertices �see Fig. 7�b��. In
total, 220 crumpling networks were analyzed. The statistical
distributions of measured parameters were determined with
the help of @RISK4.5 software �68�.

Specifically, in this work we studied the statistical distri-
bution of ridge lengths �l�. Previous works have reported
log-normal �3,30,32,37�, 	 �30,37�, and power-law �44�
functions to give good fits for this distribution. In this work,
making use of the �2, Anderson-Darling, and Kolmogorov-
Smirnov tests for goodness of fit, performed with the help of
the @RISK software �68�, we found that the crumpling ridge
length distribution in sheets folded with low confinement
ratios K�4 is best fitted by the log-normal distribution �see
Fig. 8�a��, whereas in sheets folded with high confinement

ratios K�6 the best fit of the ridge length distribution is
given by the 	 distribution �see Fig. 8�b��

P�l� =
mm

	�m�
� l

lm
�m−1

exp�− m
l

lm
� , �11�

where

lm � R �12�

is the mean ridge length �see Ref. �36��, 	�¯� is the gamma
function, and m is the shape parameter, which is proportional
to the number of crumpling ridges, Nr �see Refs. �30,69��.
The last determines the number of layers �see Fig. 9�a�� in a
randomly folded ball n� f�Nr�, where f�x� is an increasing
function of x �see Refs. �30,36��. Under the assumption that
each layer is incompressible �because the compressibility of
paper is much smaller that of the folded ball� the number of
layers can be also estimated as n=Hmin /h, where Hmin is the
minimal thickness of a ball under axial compression F→�.
Experimentally, we found that under axial compression of
F=40 kN, the number of layers behaves as

n � R2, �13�

as is shown in Fig. 9�b�.

III. DISCUSSION

Randomly folded sheets show very general reproducible
mechanical behavior characterized by a few control param-
eters. Earlier, it was shown that the energy balance between
elastic bending and stretching energies in a crumpling ridge
is responsible for the rigidity of cylindrical plates and spheri-

FIG. 7. �a� Scanned image of an unfolded sheet of paper and �b�
graph of the corresponding crumpling network.

FIG. 8. Probabilistic distributions of ridge length of crumpling
networks in sheets of thickness 0.068 mm folded with different
confinement ratios: �a� K=3.8 �bins, experimental data; solid line,
data fitting with the log-normal distribution� and �b� K=6.1 �bins,
experimental data; dashed line, data fitting with the log-normal dis-
tribution; solid line, the best fit with the 	 distribution�.
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cal shells �5� and, accordingly, is central to a fundamental
understanding of deformation such as in the folding of sheets
and membranes. Specifically, the crumpling network deter-
mines the mechanical behavior of randomly folded thin
sheets under external forces �32�.

The thermodynamics of networks evolving at equilibrium
is well described by statistical mechanics �61–63�. However,
the “frozen configurations” of crumpling networks in ran-
domly folded matter do not evolve in the absence of some
external driving �32�. In nature, there are many systems in
such “frozen states.” Examples range from supercooled liq-
uids quenched at zero temperature in states, called inherent
states �70,71�, to granular materials in which grains are “fro-
zen” because the thermal kinetic energy is negligible com-
pared to the gravitational energy and so the external bath
temperature can be considered equal to zero �72�. By analogy
with granular materials and supercooled liquids, we can treat
the mechanically stable “frozen” folding configurations as
inherent states. So we can follow up on the original ideas by
Edwards for granular materials �73–75� and attempt to de-
velop a statistical mechanics approach for the inherent states
of crumpling networks along the line of Refs. �76,77�.

As much as systems of standard statistical mechanics,
each macroscopic state of a crumpling network corresponds
to a huge number of microstates. So the first step is to indi-
viduate the states distribution: namely, what is the probabil-
ity to find the crumpling network in a given inherent state?
We can define configuration space as the set of all configu-
rations or states of the crumpling network permitted by the
folding constraints, with paths in the space corresponding to

motions �foldings� of the sheet. Further, we can expect that
under stationary conditions the crumpling network is “ran-
domized” enough, and therefore, following essentially Ed-
wards’ original ideas, we make the assumption that such a
distribution is given by a maximization of the entropy under
the condition that the average energy be fixed. Specifically,
we can consider a statistical ensemble of equivalent folded
sheets all prepared in the same way. So we indicate by �Ui�
the energies of the accessible inherent microscopic states of
each crumpling network and by ni the number of networks
with energies equal to Ui. The average energy per network is
thus U=	ipiUi, where pi=ni /N is the probability to have a
network in the inherent state i. Accordingly, the configura-
tional entropy is defined as S=−	ipiln pi �76,77�.

The dynamics from one folding state to another can be
induced by the external force Fk. We assume that the kinetic
energy driven in the folded sheet is rapidly dissipated in
crumpling ridges, and so the sheet is almost instantaneously
“frozen” in one of the inherent folding states. We can treat
these states as quasistationary, because of the macroscopic
properties change very slowly �see �17,37��. Hence, the sta-
tionary distribution is given by the maximal entropy under
the folding constraint which fixes the average energy. This
requirement leads to the Gibbs distribution function
pi=exp�−�Ui� /Z, where the partition function Z=	iexp
�−�Ui� is a normalization factor and � is a Lagrange multi-
plier determined by the constraint on the energy �see
�76,77��. Accordingly, as in standard statistical mechanics, in
the thermodynamic limit the entropy is defined as the loga-
rithm of the number of microscopic inherent states ��U�
corresponding to the given macroscopic energy U �77�:
namely,

S = ln Z − �U = ln ��U� , �14�

where

�−1 = X = � �U

�S
�

Fd

�15�

is the “configurational temperature” of the crumpling net-
work �see Refs. �74–77��. This “temperature” characterizes
the equilibrium distribution among the inherent states and
depends only on the average energy of the inherent states and
not on the particular dynamics used �78�.

To determine the entropic response of crumpling networks
on the uniaxial compression, here we analyze the shape de-
pendence of the crumpling network entropy. Taking into ac-
count that the bending rigidity of a thin sheet is much less
than its stretching rigidity and the bulk rigidity of sheet ma-
terial �32�, from Eqs. �11�–�14� it follows that under uniaxial
compression the change of the network entropy depends on
the compression ratio as

S � �
 − c� − ln�
 − c� , �16�

where

FIG. 9. �a� Picture of a cut through a crumpled ball of paper of
thickness 0.068 mm and �b� log-log plot of the number of layers, n,
versus the initial diameter of a randomly folded paper ball �R /h� for
papers of different thickness: h=0.024�0.004 mm �triangles�,
0.039�0.003 mm �rhombs�, and 0.068�0.005 mm �circles�; the
slope of the straight lines is 2.
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c =
nh

R
�17�

is the ratio of the “incompressible” layers to the ball diam-
eter. Hence, the entropic contribution to the force-
compression behavior,

F1 = − �X

R
�� �S

�

�

X

, �18�

obeys the relationship �6�, where the ball stiffness �4� is Y1
�cX and the parameter c is defined by the relationship �17�.
Taking into account the ball size dependence of n �see Eq.
�13��, from Eq. �17� follows the experimentally observed
scaling behavior �7�.

IV. CONCLUSIONS

The main conclusion to be drawn from our studies is that,
in the one-dimensional stress state, the response of a crum-
pling network to the uniaxial loading is predominantly of an
entropic nature. Accordingly, the loading part of the force-
compression curve of randomly folded sheets displays very

general reproducible mechanical behavior �6� characterized
by a few control parameters. However, in contrast to the
entropic elasticity of molecular networks �61–63�, the �slow�
stress relaxation due to the plastic deformations in folding
creases leads to the irreversibility of the force-compression
behavior of folded paper balls �see Figs. 1 and 3�.

Randomly folded matter is just one example of a broad
category of materials which can be found in “frozen states.”
The stable configurations of crumpling networks are the
minima or saddle points of the potential energy or, more
generally, all folding states which are mechanically stable.
Hence, one may expect that entropic rigidity of crumpling
networks plays an important role in diverse folding pro-
cesses. So our findings provide an insight into crumpling
phenomena, ranging from the folding of polymerized mem-
branes to the Earth’s crust buckling.
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